Homework 1 Solutions

Math 131B-2

• (2.5) For example purposes, let $A = \mathbb{Z}$, $B = \{.5, 1, 3, 6.2\}$, and $C = \{.5, .8, 1, 4, 9\}$.

(a) Let $x \in A \cup (B \cup C)$. Then at least one of $x \in A$ or $x \in B \cup C$ holds. If $x \in A$, then $x \in A \cup B$. If $x \in B \cup C$, then $x \in B$ or $x \in C$ (or both), so x is in at least one of $A \cup B$ and C. In either case, $x \in (A \cup B) \cup C$. Therefore $A \cup (B \cup C) \subseteq (A \cup B) \cup C$, since every element of the first is also an element of the second. Showing the opposite inclusion is similar. We conclude the sets are equal.

Example: $A \cup (B \cup C) = \mathbb{Z} \cup \{.5, .8, 6.2\} = (A \cup B) \cup C.$

Now, suppose $x \in A \cap (B \cap C)$. Then by definition, $x \in A$ and $x \in B \cap C$. Since $x \in B \cap C$, we see that $x \in B$ and $x \in C$, so we now know that x is an element of each of A, B, and C. Therefore $x \in A \cap B$ and $x \in C$, so $x \in (A \cap C) \cap B$. We see that $A \cap (B \cap C) \subseteq (A \cap B) \cap C$, since every element of the first is also an element of the second. Showing the opposite inclusion is very similar, so we conclude $A \cap (B \cap C) = (A \cap B) \cap C$.

Example: $A \cap (B \cap C) = \mathbb{Z} \cap \{1\} = \{1\} = (\{1, 3, 4\}) \cap C = (A \cap B) \cap C.$

(b)Let $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$, implying that $x \in A$ and x is in at least one of B and C. Ergo x is in at least one of $A \cap B$ and $A \cap C$, implying that $x \in (A \cap B) \cup (A \cap C)$. Hence $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Conversely, if $x \in (A \cap B) \cup (A \cap C)$, then x is in at least one of $A \cap B$ and $A \cap C$. If $x \in A \cap B$, then $x \in A$ and $x \in B$, so $x \in A \cap (B \cup C)$, and similarly if $x \in A \cap C$. Ergo $(A \cap B) \cup (A \cap C)$. We conclude that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Example: $A \cap (B \cup C) = \mathbb{Z} \cap \{.5, .8, 1, 3, 4, 6.2, 9\} = \{1, 3, 4, 9\} = \{1, 3\} \cup \{1, 4, 9\} = (A \cap B) \cup (A \cap C).$

(c)Let $x \in (A \cup B) \cap (A \cup C)$. Then $x \in A \cup B$, so x is an element of at least one of A and B, and $x \in A \cup C$, so x is an element of at least one of A and C. Suppose $x \in A$, then certainly $x \in A \cup (B \cap C)$. Otherwise, x must be an element of both B and C, so $x \in B \cap C$, implying that $x \in A \cup (B \cap C)$. We conclude that $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$. Conversely, suppose $x \in A \cup (B \cap C)$. Then either $x \in A$ or $x \in B \cap C$ (or both). Suppose $x \in A$, then $x \in A \cup B$ and $x \in A \cup C$, so $x \in (A \cup B) \cap (A \cup C)$. Otherwise, $x \in B \cap C$, so x is an element of both B and C, implying that $x \in A \cup B$ and $x \in A \cup C$. We conclude that $x \in (A \cup C) \cap (A \cup B)$. Ergo $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

Example: $(A \cup B) \cap (A \cup C) = (\mathbb{Z} \cup \{.5, 6.2\}) \cap (\mathbb{Z} \cup \{.5, .8\}) = (\mathbb{Z} \cap \{.5\}) = \mathbb{Z} \cup \{.5.1\} = A \cup (B \cap C).$

(f) Let $x \in (A - C) \cap (B - C)$. Then x is in both A - C and B - C. This implies that $x \in A$ and $x \in B$, but $x \notin C$, so $x \in (A \cap B) - C$. Ergo $(A - C) \cap (B - C) \subseteq (A \cap B) - C$. Conversely, let $x \in (A \cap B) - C$. Then $x \in A \cap B$ but $x \notin C$. Since $x \in A \cap B$, we see that $x \in A$ and $x \in B$, so since $x \notin C$, $x \in A - C$ and $x \in A - B$. Therefore $x \in (A - C) \cap (B - C)$, so we conclude that $(A \cap B) - C \subseteq (A - C) \cap (B - C)$, and we conclude that $(A \cap B) - C = (A - C) \cap (B - C)$, and

Example: $(A-C) \cap (B-C) = (\mathbb{Z} - \{1,3\}) \cap (\{3,6.2\}) = \{3\} = \{1,3\} - C = (A \cap B) - C$.

• (2.7) For example purposes, let $f(x) = x^2$, X = [1, 2], $Y_1 = [0, 9)$, $Y_2 = (-1, 1)$.

(a) Let $x \in X$. Then $f(x) \in f(X)$, so since the function f takes x to a point of f(X), and therefore $x \in f^{-1}(f(X))$. We conclude that $X \in f^{-1}(f(X))$.

Example: $[1,2] \subset [-2,-1] \cup [1,2] = f^{-1}(f([1,2])).$

(c) Suppose that $x \in f^{-1}(Y_1 \cup Y_2)$. Then $f(x) \in Y_1 \cup Y_2$, so f(x) is in at least one of Y_1 and Y_2 . If $f(x) \in Y_1$, $x \in f^{-1}(Y_1)$, and similarly if $f(x) \in Y_2$, $x \in f^{-1}(Y_2)$. We conclude that $x \in f^{-1}(Y_1) \cup f^{-1}(Y_2)$, and therefore $f^{-1}(Y_1 \cup Y_2) \subseteq f^{-1}(Y_1) \cup f^{-1}(Y_2)$. Conversely, suppose $x \in f^{-1}(Y_1) \cup f^{-1}(Y_2)$. Then x is in at least one of $f^{-1}(Y_1)$ or $f^{-1}(Y_2)$. Without loss of generality, $x \in f^{-1}(Y_1)$. Then $f(x) \in Y_1 \subset Y_1 \cup Y_2$, so $x \in f^{-1}(Y_1 \cup Y_2)$. We conclude that $f^{-1}(Y_1) \cup f^{-1}(Y_2) \subseteq f^{-1}(Y_1 \cup Y_2)$. This implies the desired inequality.

Example: $f^{-1}(Y_1 \cup Y_2) = f^{-1}((-1,4]) = (-3,3) = (-1,1) \cup (-3,3) = f^{-1}(Y_1) \cup f^{-1}(Y_2).$

(d) Suppose $x \in f^{-1}(Y_1 \cap Y_2)$. Then $f(x) \in Y_1 \cap Y_2$, so $f(x) \in Y_1$ and $f(x) \in Y_2$. Hence $x \in f^{-1}(Y_1)$ and $x \in f^{-1}(Y_2)$, so $x \in f^{-1}(Y_1) \cap f^{-1}(Y_2)$. Ergo $f^{-1}(Y_1 \cap Y_2) \subseteq f^{-1}(Y_1) \cap f^{-1}(Y_2)$. Conversely, suppose $x \in f^{-1}(Y_1) \cap f^{-1}(Y_2)$. Then $x \in f^{-1}(Y_1)$ and $x \in f^{-1}(Y_2)$, so $f(x) \in Y_1$ and $f(x) \in Y_2$. Hence $f(x) \in Y_1 \cap Y_2$, and therefore $x \in f^{-1}(Y_1 \cap Y_2)$. We conclude that $f^{-1}(Y_1) \cap f^{-1}(Y_2) \subseteq f^{-1}(Y_1 \cap Y_2)$. There desired inequality follows.

Example: $f^{-1}(Y_1 \cap Y_2) = f^{-1}([0,1)) = (-1,1) = (-1,1) \cap (-3,3) = f^{-1}(Y_1) \cap f^{-1}(Y_2).$

• (2.9) We will show (a) \Rightarrow (b) \Rightarrow (d) \Rightarrow (e) \Rightarrow (c) \Rightarrow (a).

(a) \Rightarrow (b) Let f be one-to-one on S. Observe that for any f, if $x \in A \cap B$, then $x \in A$ and $x \in B$, so $x \in f(A)$ and $x \in f(B)$, and therefore $f(A \cap B) \subseteq f(A) \cap f(B)$. It remains to be shown that any $x \in f(A) \cap f(B)$ is in $f(A \cap B)$. If $x \in f(A) \cap f(B)$, then f(a) = x for some $a \in A$, and f(b) = x for some $b \in B$. But since f is one-to-one, a = b, so $a \in A \cap B$, implying that $x \in f(A) \cap f(B)$. We conclude that $f(A \cap B) = f(A) \cap f(B)$.

(b) \Rightarrow (d) Let A and B be disjoint subsets of S. Then $\emptyset = f(A \cap B) = f(A) \cap f(B)$. Ergo f(A) and f(B) are also disjoint.

(d) \Rightarrow (e) Let A, B in S, then $A = (A \cap B) \cup (A - B)$, and $A \cap B$ and A - B are disjoint. Therefore $f(A \cap B)$ and f(A - B) are disjoint, and their union is f(A). Hence f(A) - f(B) = f(A - B).

(e) \Rightarrow (c) Given $A \subseteq S$, let B = S. Then by (d), we know f(S - A) = f(S) - f(A), so there is no point $x \in S - A$ with $f(x) \in A$. We conclude that $f^{-1}[f(A)] = A$.

(c) \Rightarrow (a) Suppose that f is not one-to-one on S, i.e. suppose that there exists $x \neq y$ in S such that f(x) = f(y). Then let $A = \{x\}$, so that $f(A) = \{f(x)\}$. But then $f^{-1}(f(A))$ contains $\{x, y\}$, and is therefore not equal to A. This contradicts (c). So if (c) holds, f must be one-to-one.

- (2.15) Observe that the set P_n of all degree $\leq n$ polynomials $f(x) = a_0 + a_1 x + \dots + a_n x^n$ is a copy of \mathbb{Z}^n . We can show that products of countable sets are countable, using an argument similar to the argument that \mathbb{Q} is countable from class, so \mathbb{Z}^n is countable. Since each such polynomial f has at most n real roots, the set of algebraic numbers A_n which are roots of degree n polynomials with integer coefficients is also countable (if we have a list of polynomials f_1, f_2, \dots we can just replace each entry in the list with its up to n roots). Then we claim that $\bigcup_{n=1}^{\infty} A_n$ is countable, since it is a countable union of countable sets. Hence the algebraic numbers are countable.
- (2.18) Let S be the collection of sequences whose terms are integers 0 and 1. Given any $x \in \{0, 1\}$, let us denote by x' the other element of the set. (That is, x' = 0 if x = 1 and vice versa). Suppose the set S is countable, then it is possible to make a list of sequences s_1, s_2, s_3, \cdots containing every sequence in S, where each $s_n = (s_{n1}, s_{n2}, s_{n3}, \cdots)$. Consider the sequence $t = (s'_{11}, s'_{22}, s'_{33}, \cdots)$. Then $t \neq s_n$ for any n, because the nth entry of t is $s'_{nn} \neq s_{nn}$. Therefore t is a sequence with entries 0 and 1 which does not appear on our list. Ergo S cannot be countable.
- (2.19) (a) An argument similar to the proof that \mathbb{Q} is countable shows that products of countable sets are countable, so in particular $\mathbb{Q}^n \subset \mathbb{R}^n$ is countable. Moreover, the set of neighbourhoods of rational radius around the points of $\mathbb{Q}^n \subset \mathbb{R}^n$ is a countable collection of neighbourhoods for each point (q_1, \cdots, q_n) . This is another product of countable sets, and hence is countable.

(b) Suppose $\{I_{\alpha} : \alpha \in A\}$ is a collection of disjoint intervals of positive length on the real line. Let $[a_{\alpha}, b_{\alpha}]$ be the closures of the intervals. Because each I_{α} has positive length, the numbers a_{α} are distinct, so it suffices to make a list of real numbers containing each a_{α} . Moreover, since the I_{α} are disjoint, given any particular I_{α} we can always find the next interval to the right or left of I_{α} . In particular we can make a list of the positive a_{α} from left to right of the form $a_1 < a_2 < a_3 < a_4 <$ and of the negative a_{α} of the form $a'_1 > a'_2 > a'_3 > \cdots$ from right to left. We combine these into a list $a_1, a'_1, a_2, a'_2, \cdots$. Therefore the collection $\{I_{\alpha} : \alpha \in A\}$ is countable.

• (3.27) (a) In (\mathbb{R}^2, d_1) the set of points $\mathbf{x} = (x_1, x_2)$ which have distance less than r from $\mathbf{a} = (a_1, a_2)$ is exactly the set for which both $|x_1 - a_1| < r$ and $|x_2 - a_2| < r$. This is a square with corners $(a_1 \pm r, a_2 \pm r)$ and sides parallel to the coordinate axes.

(b) In (\mathbb{R}^2, d_2) the set of points the set of points $\mathbf{x} = (x_1, x_2)$ which have distance less than r from $\mathbf{a} = (a_1, a_2)$ is exactly the set for which $|x_1 - a_1| + |x_2 - a_2| < r$. This is a square with corners $(a_1 \pm r, a_2)$ and $(a_1, a_2 \pm r)$, and diagonals parallel to the coordinate axes.

(c) Similar to (a).

(d) Similar to (b).

• (3.28) It suffices to prove the desired inequalities for the squares of the metrics in question, which is somewhat more straightforward.

$$d_1(\mathbf{x}, \mathbf{y})^2 = \max_{1 \le i \le n} |x_i - y_i|^2$$

= $\max_{1 \le i \le n} (x_i - y_i)^2$
 $\le (x_1 - y_1)^2 + \dots (x_n - y_n)^2$
= $||\mathbf{x} - \mathbf{y}||^2$

Similarly, since in general $\sqrt{a_1^2 + \cdots + a_n^2} \le |a_1| + \cdots + |a_n|$, we see that

$$||\mathbf{x}, \mathbf{y}||^{2} = (x_{1} - y_{1})^{2} + \dots + (x_{n} - y_{n})^{2}$$

$$\leq (x_{1} - y_{1})^{2} + \dots + (x_{n} - y_{n})^{2} + \sum_{1 \leq i < j \leq n} 2|x_{i} - y_{i}||x_{j} - y_{j}|$$

$$= (|x_{1} - y_{1}| + \dots + |x_{n} - y_{n}|)^{2}$$

$$= d_{2}(\mathbf{x}, \mathbf{y})^{2}$$

This shows that $d_1(\mathbf{x}, \mathbf{y}) \leq ||\mathbf{x}, \mathbf{y}|| \leq d_2(\mathbf{x}, \mathbf{y})$. For the other inequality, we observe

that

$$n||\mathbf{x} - \mathbf{y}|| = n[(x_1 - y_1)^2 + \dots + (x_n - y_n)^2]$$

$$\leq n[n \max_{1 \leq i \leq n} (x_i - y_i)^2]$$

$$= n^2 d_1(\mathbf{x}, \mathbf{y})^2.$$

For the last part of the inequality, we need to observe that in general for nonnegative a_1, \dots, a_n , we have $n(a_1^2 + \dots a_n^2) \ge (a_1 + \dots a_n)^2$. Cancelling terms, this is the same as $(n+1)(a_1^2 + \dots a_n^2) \ge \sum_{1 \le i < jn} 2a_i a_j$. To see why this is true, notice that for any positive a and b, $(a-b)^2 \ge 0$, so $a^2 - 2ab + b^2 \ge 0$, implying that $a^2 + b^2 \ge 2ab$. The general statement follows from repeated applications of this fact. Ergo we compute that

$$n||\mathbf{x} - \mathbf{y}|| = n[(x_1 - y_1)^2 + \dots + (x_n - y_n)^2]$$

$$\geq [(x_1 - y_1)^2 + \dots + (x_n - y_n)^2 + \sum_{1 \le i < j \le n} 2|x_i - y_i||x_j - y_j|] = d_2(\mathbf{x}, \mathbf{y})^2$$

We conclude that $d_2(\mathbf{x}, \mathbf{y}) \leq \sqrt{n} ||\mathbf{x} - \mathbf{y}|| \leq n d_1(\mathbf{x}, \mathbf{y}).$

• (3.29) Let (M, d) be a metric space, and

$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

We check that d' is a metric.

- For any $x \in M$, $d'(x, x) = \frac{d(x,x)}{1+d(x,x)} = \frac{0}{1} = 0$.
- (Positivity) For any $x, y \in M$ such that $x \neq y, d(x, y) > 0$ and 1 + d(x, y) > 0, so d'(x, y) > 0.
- (Symmetry) For any $x, y \in M$, d(x, y) = d(y, x) and 1 + d(x, y) = 1 + d(y, x), so d'(x, y) = d'(y, x).
- (Triangle Inequality) Let $x, y, z \in M$. Then

$$d'(x,y) - d'(z,y) = \frac{d(x,y)}{1+d(x,y)} - \frac{d(z,y)}{1+d(z,y)}$$

= $\frac{d(x,y)(1+d(z,y)) - d(z,y)(1+d(x,y))}{(1+d(x,y))(1+d(z,y))}$
= $\frac{d(x,y) - d(z,y)}{1+d(x,y) + d(z,y) + d(x,y)d(z,y)}$
 $\leq \frac{d(x,z)}{1+d(x,y) + d(z,y) + d(x,y)d(z,y)}$
 $\leq \frac{d(x,z)}{1+d(x,z)}$
= $d'(x,z)$

Here the last steps use the triangle inequality twice: we know that $d(x, y) - d(z, y) \leq d(x, z)$, and moreover we know that $d(x, y) + d(z, y) + d(x, y)d(z, y) \geq d(x, y) + d(z, y) \geq d(x, z) \geq 0$. Ergo $d'(x, y) \leq d'(x, z) + d'(z, y)$, which is the triangle inequality. (Unsurprisingly, there are many different ways to work through this algebra.)