Homework 1 Solutions

Math 131B-2

- (2.5) For example purposes, let $A=\mathbb{Z}, B=\{.5,1,3,6.2\}$, and $C=\{.5, .8,1,4,9\}$.
(a) Let $x \in A \cup(B \cup C)$. Then at least one of $x \in A$ or $x \in B \cup C$ holds. If $x \in A$, then $x \in A \cup B$. If $x \in B \cup C$, then $x \in B$ or $x \in C$ (or both), so x is in at least one of $A \cup B$ and C. In either case, $x \in(A \cup B) \cup C$. Therefore $A \cup(B \cup C) \subseteq(A \cup B) \cup C$, since every element of the first is also an element of the second. Showing the opposite inclusion is similar. We conclude the sets are equal.

Example: $A \cup(B \cup C)=\mathbb{Z} \cup\{.5, .8,6.2\}=(A \cup B) \cup C$.

Now, suppose $x \in A \cap(B \cap C)$. Then by definition, $x \in A$ and $x \in B \cap C$. Since $x \in B \cap C$, we see that $x \in B$ and $x \in C$, so we now know that x is an element of each of A, B, and C. Therefore $x \in A \cap B$ and $x \in C$, so $x \in(A \cap C) \cap B$. We see that $A \cap(B \cap C) \subseteq(A \cap B) \cap C$, since every element of the first is also an element of the second. Showing the opposite inclusion is very similar, so we conclude $A \cap(B \cap C)=(A \cap B) \cap C)$.

Example: $A \cap(B \cap C)=\mathbb{Z} \cap\{1\}=\{1\}=(\{1,3,4\}) \cap C=(A \cap B) \cap C$.
(b)Let $x \in A \cap(B \cup C)$. Then $x \in A$ and $x \in B \cup C$, implying that $x \in A$ and x is in at least one of B and C. Ergo x is in at least one of $A \cap B$ and $A \cap C$, implying that $x \in(A \cap B) \cup(A \cap C)$. Hence $A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)$. Conversely, if $x \in(A \cap B) \cup(A \cap C)$, then x is in at least one of $A \cap B$ and $A \cap C$. If $x \in A \cap B$, then $x \in A$ and $x \in B$, so $x \in A \cap(B \cup C)$, and similarly if $x \in A \cap C$. Ergo $(A \cap B) \cup(A \cap C) \subseteq A \cap(B \cup C)$. We conclude that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

Example: $A \cap(B \cup C)=\mathbb{Z} \cap\{.5, .8,1,3,4,6.2,9\}=\{1,3,4,9\}=\{1,3\} \cup\{1,4,9\}=$ $(A \cap B) \cup(A \cap C)$.
(c)Let $x \in(A \cup B) \cap(A \cup C)$. Then $x \in A \cup B$, so x is an element of at least one of A and B, and $x \in A \cup C$, so x is an element of at least one of A and C. Suppose $x \in A$, then certainly $x \in A \cup(B \cap C)$. Otherwise, x must be an element of both B and C, so $x \in B \cap C$, implying that $x \in A \cup(B \cap C)$. We conclude that $(A \cup B) \cap(A \cup C) \subseteq A \cup(B \cap C)$. Conversely, suppose $x \in A \cup(B \cap C)$. Then either $x \in A$ or $x \in B \cap C$ (or both). Suppose $x \in A$, then $x \in A \cup B$ and $x \in A \cup C$, so $x \in(A \cup B) \cap(A \cup C)$. Otherwise, $x \in B \cap C$, so x is an element of both B and C, implying that $x \in A \cup B$ and $x \in A \cup C$. We conclude that $x \in(A \cup C) \cap(A \cup B)$.

Ergo $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

Example: $(A \cup B) \cap(A \cup C)=(\mathbb{Z} \cup\{.5,6.2\}) \cap(\mathbb{Z} \cup\{.5, .8\})=(\mathbb{Z} \cap\{.5\})=\mathbb{Z} \cup\{.5 .1\}=$ $A \cup(B \cap C)$.
(f) Let $x \in(A-C) \cap(B-C)$. Then x is in both $A-C$ and $B-C$. This implies that $x \in A$ and $x \in B$, but $x \notin C$, so $x \in(A \cap B)-C$. Ergo $(A-C) \cap(B-C) \subseteq(A \cap B)-C$. Conversely, let $x \in(A \cap B)-C$. Then $x \in A \cap B$ but $x \notin C$. Since $x \in A \cap B$, we see that $x \in A$ and $x \in B$, so since $x \notin C, x \in A-C$ and $x \in A-B$. Therefore $x \in(A-C) \cap(B-C)$, so we conclude that $(A \cap B)-C \subseteq(A-C) \cap(B-C)$, and we conclude that $(A \cap B)-C=(A-C) \cap(B-C)$.
Example: $(A-C) \cap(B-C)=(\mathbb{Z}-\{1,3\}) \cap(\{3,6.2\})=\{3\}=\{1,3\}-C=(A \cap B)-C$.

- (2.7) For example purposes, let $f(x)=x^{2}, X=[1,2], Y_{1}=[0,9), Y_{2}=(-1,1)$.
(a) Let $x \in X$. Then $f(x) \in f(X)$, so since the funtion f takes x to a point of $f(X)$, and therefore $x \in f^{-1}(f(X))$. We conclude that $X \in f^{-1}(f(X))$.

Example: $[1,2] \subset[-2,-1] \cup[1,2]=f^{-1}(f([1,2]))$.
(c) Suppose that $x \in f^{-1}\left(Y_{1} \cup Y_{2}\right)$. Then $f(x) \in Y_{1} \cup Y_{2}$, so $f(x)$ is in at least one of Y_{1} and Y_{2}. If $f(x) \in Y_{1}, x \in f^{-1}\left(Y_{1}\right)$, and similarly if $f(x) \in Y_{2}, x \in f^{-1}\left(Y_{2}\right)$. We conclude that $x \in f^{-1}\left(Y_{1}\right) \cup f^{-1}\left(Y_{2}\right)$, and therefore $f^{-1}\left(Y_{1} \cup Y_{2}\right) \subseteq f^{-1}\left(Y_{1}\right) \cup f^{-1}\left(Y_{2}\right)$. Conversely, suppose $x \in f^{-1}\left(Y_{1}\right) \cup f^{-1}\left(Y_{2}\right)$. Then x is in at least one of $f^{-1}\left(Y_{1}\right)$ or $f^{-1}\left(Y_{2}\right)$. Without loss of generality, $x \in f^{-1}\left(Y_{1}\right)$. Then $f(x) \in Y_{1} \subset Y_{1} \cup Y_{2}$, so $x \in f^{-1}\left(Y_{1} \cup Y_{2}\right)$. We conclude that $f^{-1}\left(Y_{1}\right) \cup f^{-1}\left(Y_{2}\right) \subseteq f^{-1}\left(Y_{1} \cup Y_{2}\right)$. This implies the desired inequality.

Example: $f^{-1}\left(Y_{1} \cup Y_{2}\right)=f^{-1}((-1,4])=(-3,3)=(-1,1) \cup(-3,3)=f^{-1}\left(Y_{1}\right) \cup$ $f^{-1}\left(Y_{2}\right)$.
(d) Suppose $x \in f^{-1}\left(Y_{1} \cap Y_{2}\right)$. Then $f(x) \in Y_{1} \cap Y_{2}$, so $f(x) \in Y_{1}$ and $f(x) \in Y_{2}$. Hence $x \in f^{-1}\left(Y_{1}\right)$ and $x \in f^{-1}\left(Y_{2}\right)$, so $x \in f^{-1}\left(Y_{1}\right) \cap f^{-1}\left(Y_{2}\right)$. Ergo $f^{-1}\left(Y_{1} \cap Y_{2}\right) \subseteq$ $f^{-1}\left(Y_{1}\right) \cap f^{-1}\left(Y_{2}\right)$. Conversely, suppose $x \in f^{-1}\left(Y_{1}\right) \cap f^{-1}\left(Y_{2}\right)$. Then $x \in f^{-1}\left(Y_{1}\right)$ and $x \in f^{-1}\left(Y_{2}\right)$, so $f(x) \in Y_{1}$ and $f(x) \in Y_{2}$. Hence $f(x) \in Y_{1} \cap Y_{2}$, and therefore $x \in f^{-1}\left(Y_{1} \cap Y_{2}\right)$. We conclude that $f^{-1}\left(Y_{1}\right) \cap f^{-1}\left(Y_{2}\right) \subseteq f^{-1}\left(Y_{1} \cap Y_{2}\right)$. There desired inequality follows.
Example: $f^{-1}\left(Y_{1} \cap Y_{2}\right)=f^{-1}([0,1))=(-1,1)=(-1,1) \cap(-3,3)=f^{-1}\left(Y_{1}\right) \cap f^{-1}\left(Y_{2}\right)$.

- (2.9) We will show $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{d}) \Rightarrow(\mathrm{e}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{a})$.
(a) \Rightarrow (b) Let f be one-to-one on S. Observe that for any f, if $x \in A \cap B$, then $x \in A$ and $x \in B$, so $x \in f(A)$ and $x \in f(B)$, and therefore $f(A \cap B) \subseteq f(A) \cap f(B)$. It remains to be shown that any $x \in f(A) \cap f(B)$ is in $f(A \cap B)$. If $x \in f(A) \cap f(B)$, then
$f(a)=x$ for some $a \in A$, and $f(b)=x$ for some $b \in B$. But since f is one-to-one, $a=b$, so $a \in A \cap B$, implying that $x \in f(A) \cap f(B)$. We conclude that $f(A \cap B)=f(A) \cap f(B)$.
$(\mathrm{b}) \Rightarrow(\mathrm{d})$ Let A and B be disjoint subsets of S. Then $\emptyset=f(A \cap B)=f(A) \cap f(B)$. Ergo $f(A)$ and $f(B)$ are also disjoint.
$(\mathrm{d}) \Rightarrow(\mathrm{e})$ Let A, B in S, then $A=(A \cap B) \cup(A-B)$, and $A \cap B$ and $A-B$ are disjoint. Therefore $f(A \cap B)$ and $f(A-B)$ are disjoint, and their union is $f(A)$. Hence $f(A)-f(B)=f(A-B)$.
(e) \Rightarrow (c) Given $A \subseteq S$, let $B=S$. Then by (d), we know $f(S-A)=f(S)-f(A)$, so there is no point $x \in S-A$ with $f(x) \in A$. We conclude that $f^{-1}[f(A)]=A$.
$(\mathrm{c}) \Rightarrow$ (a) Suppose that f is not one-to-one on S, i.e. suppose that there exists $x \neq y$ in S such that $f(x)=f(y)$. Then let $A=\{x\}$, so that $f(A)=\{f(x)\}$. But then $f^{-1}(f(A))$ contains $\{x, y\}$, and is therefore not equal to A. This contradicts (c). So if (c) holds, f must be one-to-one.
- (2.15) Observe that the set P_{n} of all degree $\leq n$ polynomials $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ is a copy of \mathbb{Z}^{n}. We can show that products of countable sets are countable, using an argument similar to the argument that \mathbb{Q} is countable from class, so \mathbb{Z}^{n} is countable. Since each such polynomial f has at most n real roots, the set of algebraic numbers A_{n} which are roots of degree n polynomials with integer coefficients is also countable (if we have a list of polynomials f_{1}, f_{2}, \cdots we can just replace each entry in the list with its up to n roots). Then we claim that $\cup_{n=1}^{\infty} A_{n}$ is countable, since it is a countable union of countable sets. Hence the algebraic numbers are countable.
- (2.18) Let S be the collection of sequences whose terms are integers 0 and 1 . Given any $x \in\{0,1\}$, let us denote by x^{\prime} the other element of the set. (That is, $x^{\prime}=0$ if $x=1$ and vice versa). Suppose the set S is countable, then it is possible to make a list of sequences $s_{1}, s_{2}, s_{3}, \cdots$ containing every sequence in S, where each $s_{n}=\left(s_{n 1}, s_{n 2}, s_{n 3}, \cdots\right)$. Consider the sequence $t=\left(s_{11}^{\prime}, s_{22}^{\prime}, s_{33}^{\prime}, \cdots\right)$. Then $t \neq s_{n}$ for any n, because the nth entry of t is $s_{n n}^{\prime} \neq s_{n n}$. Therefore t is a sequence with entries 0 and 1 which does not appear on our list. Ergo S cannot be countable.
- (2.19) (a) An argument similar to the proof that \mathbb{Q} is countable shows that products of countable sets are countable, so in particular $\mathbb{Q}^{n} \subset \mathbb{R}^{n}$ is countable. Moreover, the set of neighbourhoods of rational radius around the points of $\mathbb{Q}^{n} \subset \mathbb{R}^{n}$ is a countable collection of neighbourhoods for each point $\left(q_{1}, \cdots q_{n}\right)$. This is another product of countable sets, and hence is countable.
(b) Suppose $\left\{I_{\alpha}: \alpha \in A\right\}$ is a collection of disjoint intervals of positive length on the real line. Let $\left[a_{\alpha}, b_{\alpha}\right]$ be the closures of the intervals. Because each I_{α} has positive length, the numbers a_{α} are distinct, so it suffices to make a list of real numbers containing each a_{α}. Moreover, since the I_{α} are disjoint, given any particular I_{α} we can always find the next interval to the right or left of I_{α}. In particular we can make a list of the positive a_{α} from left to right of the form $a_{1}<a_{2}<a_{3}<a_{4}<$ and of the negative a_{α} of the form $a_{1}^{\prime}>a_{2}^{\prime}>a_{3}^{\prime}>\cdots$ from right to left. We combine these into a list $a_{1}, a_{1}^{\prime}, a_{2}, a_{2}^{\prime}, \cdots$. Therefore the collection $\left\{I_{\alpha}: \alpha \in A\right\}$ is countable.
- (3.27) (a) In $\left(\mathbb{R}^{2}, d_{1}\right)$ the set of points $\mathbf{x}=\left(x_{1}, x_{2}\right)$ which have distance less than r from $\mathbf{a}=\left(a_{1}, a_{2}\right)$ is exactly the set for which both $\left|x_{1}-a_{1}\right|<r$ and $\left|x_{2}-a_{2}\right|<r$. This is a square with corners ($a_{1} \pm r, a_{2} \pm r$) and sides parallel to the coordinate axes.
(b) In $\left(\mathbb{R}^{2}, d_{2}\right)$ the set of points the set of points $\mathbf{x}=\left(x_{1}, x_{2}\right)$ which have distance less than r from $\mathbf{a}=\left(a_{1}, a_{2}\right)$ is exactly the set for which $\left|x_{1}-a_{1}\right|+\left|x_{2}-a_{2}\right|<r$. This is a square with corners ($a_{1} \pm r, a_{2}$) and ($a_{1}, a_{2} \pm r$), and diagonals parallel to the coordinate axes.
(c) Similar to (a).
(d) Similar to (b).
- (3.28) It suffices to prove the desired inequalities for the squares of the metrics in question, which is somewhat more straightforward.

$$
\begin{aligned}
d_{1}(\mathbf{x}, \mathbf{y})^{2} & =\max _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|^{2} \\
& =\max _{1 \leq i \leq n}\left(x_{i}-y_{i}\right)^{2} \\
& \leq\left(x_{1}-y_{1}\right)^{2}+\cdots\left(x_{n}-y_{n}\right)^{2} \\
& =\|\mathbf{x}-\mathbf{y}\|^{2}
\end{aligned}
$$

Similarly, since in general $\sqrt{a_{1}^{2}+\cdots+a_{n}^{2}} \leq\left|a_{1}\right|+\cdots+\left|a_{n}\right|$, we see that

$$
\begin{aligned}
\|\mathbf{x}, \mathbf{y}\|^{2} & =\left(x_{1}-y_{1}\right)^{2}+\cdots\left(x_{n}-y_{n}\right)^{2} \\
& \leq\left(x_{1}-y_{1}\right)^{2}+\cdots\left(x_{n}-y_{n}\right)^{2}+\sum_{1 \leq i<j \leq n} 2\left|x_{i}-y_{i}\right|\left|x_{j}-y_{j}\right| \\
& =\left(\left|x_{1}-y_{1}\right|+\cdots\left|x_{n}-y_{n}\right|\right)^{2} \\
& =d_{2}(\mathbf{x}, \mathbf{y})^{2}
\end{aligned}
$$

This shows that $d_{1}(\mathbf{x}, \mathbf{y}) \leq\|\mathbf{x}, \mathbf{y}\| \leq d_{2}(\mathbf{x}, \mathbf{y})$. For the other inequality, we observe
that

$$
\begin{aligned}
n\|\mathbf{x}-\mathbf{y}\| & =n\left[\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}\right] \\
& \leq n\left[n \max _{1 \leq i \leq n}\left(x_{i}-y_{i}\right)^{2}\right] \\
& =n^{2} d_{1}(\mathbf{x}, \mathbf{y})^{2} .
\end{aligned}
$$

For the last part of the inequality, we need to observe that in general for nonnegative a_{1}, \cdots, a_{n}, we have $n\left(a_{1}^{2}+\cdots a_{n}^{2}\right) \geq\left(a_{1}+\cdots a_{n}\right)^{2}$. Cancelling terms, this is the same as $(n+1)\left(a_{1}^{2}+\cdots a_{n}^{2}\right) \geq \sum_{1 \leq i<j n} 2 a_{i} a_{j}$. To see why this is true, notice that for any positive a and $b,(a-b)^{2} \geq 0$, so $a^{2}-2 a b+b^{2} \geq 0$, implying that $a^{2}+b^{2} \geq 2 a b$. The general statement follows from repeated applications of this fact. Ergo we compute that

$$
\begin{aligned}
n\|\mathbf{x}-\mathbf{y}\| & =n\left[\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}\right] \\
& \geq\left[\left(x_{1}-y_{1}\right)^{2}+\cdots\left(x_{n}-y_{n}\right)^{2}+\sum_{1 \leq i<j \leq n} 2\left|x_{i}-y_{i} \| x_{j}-y_{j}\right|\right]=d_{2}(\mathbf{x}, \mathbf{y})^{2}
\end{aligned}
$$

We conclude that $d_{2}(\mathbf{x}, \mathbf{y}) \leq \sqrt{n}\|\mathbf{x}-\mathbf{y}\| \leq n d_{1}(\mathbf{x}, \mathbf{y})$.

- (3.29) Let (M, d) be a metric space, and

$$
d^{\prime}(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

We check that d^{\prime} is a metric.

- For any $x \in M, d^{\prime}(x, x)=\frac{d(x, x)}{1+d(x, x)}=\frac{0}{1}=0$.
- (Positivity) For any $x, y \in M$ such that $x \neq y, d(x, y)>0$ and $1+d(x, y)>0$, so $d^{\prime}(x, y)>0$.
- (Symmetry) For any $x, y \in M, d(x, y)=d(y, x)$ and $1+d(x, y)=1+d(y, x)$, so $d^{\prime}(x, y)=d^{\prime}(y, x)$.
- (Triangle Inequality) Let $x, y, z \in M$. Then

$$
\begin{aligned}
d^{\prime}(x, y)-d^{\prime}(z, y) & =\frac{d(x, y)}{1+d(x, y)}-\frac{d(z, y)}{1+d(z, y)} \\
& =\frac{d(x, y)(1+d(z, y))-d(z, y)(1+d(x, y))}{(1+d(x, y))(1+d(z, y))} \\
& =\frac{d(x, y)-d(z, y)}{1+d(x, y)+d(z, y)+d(x, y) d(z, y)} \\
& \leq \frac{d(x, z)}{1+d(x, y)+d(z, y)+d(x, y) d(z, y)} \\
& \leq \frac{d(x, z)}{1+d(x, z)} \\
& =d^{\prime}(x, z)
\end{aligned}
$$

Here the last steps use the triangle inequality twice: we know that $d(x, y)-$ $d(z, y) \leq d(x, z)$, and moreover we know that $d(x, y)+d(z, y)+d(x, y) d(z, y) \geq$ $d(x, y)+d(z, y) \geq d(x, z) \geq 0$. Ergo $d^{\prime}(x, y) \leq d^{\prime}(x, z)+d^{\prime}(z, y)$, which is the triangle inequality. (Unsurprisingly, there are many different ways to work through this algebra.)

