
Homework 1 Solutions

Math 131B-2

• (2.5) For example purposes, let A = Z, B = {.5, 1, 3, 6.2}, and C = {.5, .8, 1, 4, 9}.

(a) Let x ∈ A ∪ (B ∪ C). Then at least one of x ∈ A or x ∈ B ∪ C holds. If x ∈ A,
then x ∈ A∪B. If x ∈ B ∪C, then x ∈ B or x ∈ C (or both), so x is in at least one of
A ∪B and C. In either case, x ∈ (A ∪B) ∪C. Therefore A ∪ (B ∪C) ⊆ (A ∪B) ∪C,
since every element of the first is also an element of the second. Showing the opposite
inclusion is similar. We conclude the sets are equal.

Example: A ∪ (B ∪ C) = Z ∪ {.5, .8, 6.2} = (A ∪B) ∪ C.

Now, suppose x ∈ A ∩ (B ∩ C). Then by definition, x ∈ A and x ∈ B ∩ C. Since
x ∈ B ∩ C, we see that x ∈ B and x ∈ C, so we now know that x is an element
of each of A, B, and C. Therefore x ∈ A ∩ B and x ∈ C, so x ∈ (A ∩ C) ∩ B.
We see that A ∩ (B ∩ C) ⊆ (A ∩ B) ∩ C, since every element of the first is also an
element of the second. Showing the opposite inclusion is very similar, so we conclude
A ∩ (B ∩ C) = (A ∩B) ∩ C).

Example: A ∩ (B ∩ C) = Z ∩ {1} = {1} = ({1, 3, 4}) ∩ C = (A ∩B) ∩ C.

(b)Let x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ B ∪ C, implying that x ∈ A and
x is in at least one of B and C. Ergo x is in at least one of A ∩ B and A ∩ C,
implying that x ∈ (A ∩ B) ∪ (A ∩ C). Hence A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C).
Conversely, if x ∈ (A ∩B) ∪ (A ∩ C), then x is in at least one of A ∩B and A ∩ C. If
x ∈ A ∩ B, then x ∈ A and x ∈ B, so x ∈ A ∩ (B ∪ C), and similarly if x ∈ A ∩ C.
Ergo (A∩B)∪(A∩C) ⊆ A∩(B∪C). We conclude that A∩(B∪C) = (A∩B)∪(A∩C).

Example: A ∩ (B ∪ C) = Z ∩ {.5, .8, 1, 3, 4, 6.2, 9} = {1, 3, 4, 9} = {1, 3} ∪ {1, 4, 9} =
(A ∩B) ∪ (A ∩ C).

(c)Let x ∈ (A ∪ B) ∩ (A ∪ C). Then x ∈ A ∪ B, so x is an element of at least one
of A and B, and x ∈ A ∪ C, so x is an element of at least one of A and C. Sup-
pose x ∈ A, then certainly x ∈ A ∪ (B ∩ C). Otherwise, x must be an element of
both B and C, so x ∈ B ∩ C, implying that x ∈ A ∪ (B ∩ C). We conclude that
(A ∪B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C). Conversely, suppose x ∈ A ∪ (B ∩ C). Then either
x ∈ A or x ∈ B ∩ C (or both). Suppose x ∈ A, then x ∈ A ∪ B and x ∈ A ∪ C, so
x ∈ (A ∪ B) ∩ (A ∪ C). Otherwise, x ∈ B ∩ C, so x is an element of both B and C,
implying that x ∈ A ∪ B and x ∈ A ∪ C. We conclude that x ∈ (A ∪ C) ∩ (A ∪ B).



Ergo A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Example: (A∪B)∩(A∪C) = (Z∪{.5, 6.2})∩(Z∪{.5, .8}) = (Z∩{.5}) = Z∪{.5.1} =
A ∪ (B ∩ C).

(f) Let x ∈ (A−C)∩ (B−C). Then x is in both A−C and B−C. This implies that
x ∈ A and x ∈ B, but x /∈ C, so x ∈ (A∩B)−C. Ergo (A−C)∩(B−C) ⊆ (A∩B)−C.
Conversely, let x ∈ (A ∩ B) − C. Then x ∈ A ∩ B but x /∈ C. Since x ∈ A ∩ B, we
see that x ∈ A and x ∈ B, so since x /∈ C, x ∈ A − C and x ∈ A − B. Therefore
x ∈ (A− C) ∩ (B − C), so we conclude that (A ∩ B)− C ⊆ (A− C) ∩ (B − C), and
we conclude that (A ∩B)− C = (A− C) ∩ (B − C).

Example: (A−C)∩(B−C) = (Z−{1, 3})∩({3, 6.2}) = {3} = {1, 3}−C = (A∩B)−C.

• (2.7) For example purposes, let f(x) = x2, X = [1, 2], Y1 = [0, 9), Y2 = (−1, 1).

(a) Let x ∈ X. Then f(x) ∈ f(X), so since the funtion f takes x to a point of f(X),
and therefore x ∈ f−1(f(X)). We conclude that X ∈ f−1(f(X)).

Example: [1, 2] ⊂ [−2,−1] ∪ [1, 2] = f−1(f([1, 2])).

(c) Suppose that x ∈ f−1(Y1∪Y2). Then f(x) ∈ Y1∪Y2, so f(x) is in at least one of Y1
and Y2. If f(x) ∈ Y1, x ∈ f−1(Y1), and similarly if f(x) ∈ Y2, x ∈ f−1(Y2). We conclude
that x ∈ f−1(Y1) ∪ f−1(Y2), and therefore f−1(Y1 ∪ Y2) ⊆ f−1(Y1) ∪ f−1(Y2). Con-
versely, suppose x ∈ f−1(Y1)∪f−1(Y2). Then x is in at least one of f−1(Y1) or f−1(Y2).
Without loss of generality, x ∈ f−1(Y1). Then f(x) ∈ Y1 ⊂ Y1∪Y2, so x ∈ f−1(Y1∪Y2).
We conclude that f−1(Y1)∪f−1(Y2) ⊆ f−1(Y1∪Y2). This implies the desired inequality.

Example: f−1(Y1 ∪ Y2) = f−1((−1, 4]) = (−3, 3) = (−1, 1) ∪ (−3, 3) = f−1(Y1) ∪
f−1(Y2).

(d) Suppose x ∈ f−1(Y1 ∩ Y2). Then f(x) ∈ Y1 ∩ Y2, so f(x) ∈ Y1 and f(x) ∈ Y2.
Hence x ∈ f−1(Y1) and x ∈ f−1(Y2), so x ∈ f−1(Y1) ∩ f−1(Y2). Ergo f−1(Y1 ∩ Y2) ⊆
f−1(Y1) ∩ f−1(Y2). Conversely, suppose x ∈ f−1(Y1) ∩ f−1(Y2). Then x ∈ f−1(Y1)
and x ∈ f−1(Y2), so f(x) ∈ Y1 and f(x) ∈ Y2. Hence f(x) ∈ Y1 ∩ Y2, and therefore
x ∈ f−1(Y1 ∩ Y2). We conclude that f−1(Y1) ∩ f−1(Y2) ⊆ f−1(Y1 ∩ Y2). There desired
inequality follows.

Example: f−1(Y1∩Y2) = f−1([0, 1)) = (−1, 1) = (−1, 1)∩ (−3, 3) = f−1(Y1)∩f−1(Y2).

• (2.9) We will show (a)⇒(b)⇒(d)⇒(e)⇒(c)⇒(a).

(a)⇒(b) Let f be one-to-one on S. Observe that for any f , if x ∈ A ∩ B, then x ∈ A
and x ∈ B, so x ∈ f(A) and x ∈ f(B), and therefore f(A ∩ B) ⊆ f(A) ∩ f(B). It
remains to be shown that any x ∈ f(A)∩f(B) is in f(A∩B). If x ∈ f(A)∩f(B), then



f(a) = x for some a ∈ A, and f(b) = x for some b ∈ B. But since f is one-to-one, a = b,
so a ∈ A∩B, implying that x ∈ f(A)∩f(B). We conclude that f(A∩B) = f(A)∩f(B).

(b)⇒(d) Let A and B be disjoint subsets of S. Then ∅ = f(A ∩ B) = f(A) ∩ f(B).
Ergo f(A) and f(B) are also disjoint.

(d)⇒(e) Let A, B in S, then A = (A ∩ B) ∪ (A − B), and A ∩ B and A − B are
disjoint. Therefore f(A∩B) and f(A−B) are disjoint, and their union is f(A). Hence
f(A)− f(B) = f(A−B).

(e)⇒(c) Given A ⊆ S, let B = S. Then by (d), we know f(S − A) = f(S)− f(A), so
there is no point x ∈ S − A with f(x) ∈ A. We conclude that f−1[f(A)] = A.

(c)⇒(a) Suppose that f is not one-to-one on S, i.e. suppose that there exists x 6= y
in S such that f(x) = f(y). Then let A = {x}, so that f(A) = {f(x)}. But then
f−1(f(A)) contains {x, y}, and is therefore not equal to A. This contradicts (c). So if
(c) holds, f must be one-to-one.

• (2.15) Observe that the set Pn of all degree ≤ n polynomials f(x) = a0+a1x+· · ·+anxn
is a copy of Zn. We can show that products of countable sets are countable, using an
argument similar to the argument that Q is countable from class, so Zn is countable.
Since each such polynomial f has at most n real roots, the set of algebraic numbers An
which are roots of degree n polynomials with integer coefficients is also countable (if
we have a list of polynomials f1, f2, · · · we can just replace each entry in the list with
its up to n roots). Then we claim that ∪∞n=1An is countable, since it is a countable
union of countable sets. Hence the algebraic numbers are countable.

• (2.18) Let S be the collection of sequences whose terms are integers 0 and 1. Given any
x ∈ {0, 1}, let us denote by x′ the other element of the set. (That is, x′ = 0 if x = 1 and
vice versa). Suppose the set S is countable, then it is possible to make a list of sequences
s1, s2, s3, · · · containing every sequence in S, where each sn = (sn1, sn2, sn3, · · · ). Con-
sider the sequence t = (s′11, s

′
22, s

′
33, · · · ). Then t 6= sn for any n, because the nth entry

of t is s′nn 6= snn. Therefore t is a sequence with entries 0 and 1 which does not appear
on our list. Ergo S cannot be countable.

• (2.19) (a) An argument similar to the proof that Q is countable shows that products
of countable sets are countable, so in particular Qn ⊂ Rn is countable. Moreover, the
set of neighbourhoods of rational radius around the points of Qn ⊂ Rn is a countable
collection of neighbourhoods for each point (q1, · · · qn). This is another product of
countable sets, and hence is countable.



(b) Suppose {Iα : α ∈ A} is a collection of disjoint intervals of positive length on the
real line. Let [aα, bα] be the closures of the intervals. Because each Iα has positive
length, the numbers aα are distinct, so it suffices to make a list of real numbers con-
taining each aα. Moreover, since the Iα are disjoint, given any particular Iα we can
always find the next interval to the right or left of Iα. In particular we can make a
list of the positive aα from left to right of the form a1 < a2 < a3 < a4 < and of the
negative aα of the form a′1 > a′2 > a′3 > · · · from right to left. We combine these into
a list a1, a

′
1, a2, a

′
2, · · · . Therefore the collection {Iα : α ∈ A} is countable.

• (3.27) (a) In (R2, d1) the set of points x = (x1, x2) which have distance less than r from
a = (a1, a2) is exactly the set for which both |x1 − a1| < r and |x2 − a2| < r. This is a
square with corners (a1 ± r, a2 ± r) and sides parallel to the coordinate axes.

(b) In (R2, d2) the set of points the set of points x = (x1, x2) which have distance less
than r from a = (a1, a2) is exactly the set for which |x1− a1|+ |x2− a2| < r. This is a
square with corners (a1±r, a2) and (a1, a2±r), and diagonals parallel to the coordinate
axes.

(c) Similar to (a).

(d) Similar to (b).

• (3.28) It suffices to prove the desired inequalities for the squares of the metrics in
question, which is somewhat more straightforward.

d1(x,y)2 = max
1≤i≤n

|xi − yi|2

= max
1≤i≤n

(xi − yi)2

≤ (x1 − y1)2 + · · · (xn − yn)2

= ||x− y||2

Similarly, since in general
√
a21 + · · ·+ a2n ≤ |a1|+ · · ·+ |an|, we see that

||x,y||2 = (x1 − y1)2 + · · · (xn − yn)2

≤ (x1 − y1)2 + · · · (xn − yn)2 +
∑

1≤i<j≤n

2|xi − yi||xj − yj|

= (|x1 − y1|+ · · · |xn − yn|)2

= d2(x,y)2

This shows that d1(x,y) ≤ ||x,y|| ≤ d2(x,y). For the other inequality, we observe



that

n||x− y|| = n[(x1 − y1)2 + · · ·+ (xn − yn)2]

≤ n[n max
1≤i≤n

(xi − yi)2]

= n2d1(x,y)2.

For the last part of the inequality, we need to observe that in general for nonnegative
a1, · · · , an, we have n(a21 + · · · a2n) ≥ (a1 + · · · an)2. Cancelling terms, this is the same
as (n + 1)(a21 + · · · a2n) ≥

∑
1≤i<jn 2aiaj. To see why this is true, notice that for any

positive a and b, (a− b)2 ≥ 0, so a2 − 2ab+ b2 ≥ 0, implying that a2 + b2 ≥ 2ab. The
general statement follows from repeated applications of this fact. Ergo we compute
that

n||x− y|| = n[(x1 − y1)2 + · · ·+ (xn − yn)2]

≥ [(x1 − y1)2 + · · · (xn − yn)2 +
∑

1≤i<j≤n

2|xi − yi||xj − yj|] = d2(x,y)2

We conclude that d2(x,y) ≤
√
n||x− y|| ≤ nd1(x,y).

• (3.29) Let (M,d) be a metric space, and

d′(x, y) =
d(x, y)

1 + d(x, y)
.

We check that d′ is a metric.

– For any x ∈M , d′(x, x) = d(x,x)
1+d(x,x)

= 0
1

= 0.

– (Positivity) For any x, y ∈M such that x 6= y, d(x, y) > 0 and 1 + d(x, y) > 0, so
d′(x, y) > 0.

– (Symmetry) For any x, y ∈ M , d(x, y) = d(y, x) and 1 + d(x, y) = 1 + d(y, x), so
d′(x, y) = d′(y, x).

– (Triangle Inequality) Let x, y, z ∈M . Then

d′(x, y)− d′(z, y) =
d(x, y)

1 + d(x, y)
− d(z, y)

1 + d(z, y)

=
d(x, y)(1 + d(z, y))− d(z, y)(1 + d(x, y))

(1 + d(x, y))(1 + d(z, y))

=
d(x, y)− d(z, y)

1 + d(x, y) + d(z, y) + d(x, y)d(z, y)

≤ d(x, z)

1 + d(x, y) + d(z, y) + d(x, y)d(z, y)

≤ d(x, z)

1 + d(x, z)

= d′(x, z)



Here the last steps use the triangle inequality twice: we know that d(x, y) −
d(z, y) ≤ d(x, z), and moreover we know that d(x, y) + d(z, y) + d(x, y)d(z, y) ≥
d(x, y) + d(z, y) ≥ d(x, z) ≥ 0. Ergo d′(x, y) ≤ d′(x, z) + d′(z, y), which is the tri-
angle inequality. (Unsurprisingly, there are many different ways to work through
this algebra.)


